

Excel and Noble Trials : What Is the Impact on Clinical Practice Two Years Later

I. Sheiban

Director of Interventional Cardyology Pederzoli Hospital Peschiera del Garda (Verona)/Italy

E-mail : isheiban@gmail.com

Impact of EXCEL & NOBLE Two Years Later

Before EXCEL and NOBLE...

PCI vs CABG for LM Disease : 12 Meta-Analyses, 2009-2014

Author	Journal	Year	RCT	Non-RCT	Pts	FU			
DES vs. CABG for LM Disease Consensus from trials and meta-analysis									
1.Stoke is H 2.TVR is Hig 3.Outcomes and interme 4. CABG is s	 Stoke is Higher in CABG. TVR is Higher in PCI. Outcomes of PCI with DES is Comparable with CABG in low and intermediate risk patients CABG is superior in patients with diffuse disease 								

SYNTAX Trial : LM 5yrs Outcome

Eur Heart J. 2014,35:2821-2830

The Trial That Changed our Practice ...

European Heart Journal Advance Access published August 29, 2014

European Heart Journal doi:10.1093/eurheartj/ehu278

2014 ESC/EACTS Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Recommendation for the type of revascularization (CABG or PCI) in patients with SCAD with suitable coronary anatomy for both procedures and low predicted surgical mortality

^bLevel of evidence.

^cReferences.

GW Stone et al; N Engl J Med. 2016;375:2223–2235

Primary endpoint: MACCE

(All cuase-Mortality, Non-procedural MI, RR, Stroke)

EXCEL and NOBLE Trials : Similarities and Diferences

Variables	NOBLE trial	EXCEL trial		
Trial design				
Patient characteristics	STEMI within 24 h excluded	All ACS eligible		
Anatomic characteristics	ULMCAD stenosis >50% or FFR<0.80; no more than 3 additional lesion or complex addition lesion	ULMCAD stenosis >70% or if 50-70% then FFR<0.80; SYNTAX <32		
Primary endpoint	Death, spontaneous MI, stroke or revascularization	Death, any MI or stroke		
Geographic region	100% Europe	56% Europe, 40% North America, 4% Other*		
Sample size	1,201	1,905		
Median follow-up time	3.1 years	3.0 years		
Study population				
SYNTAX score	22.5±7.5	20.6±6.2		
ACS	18%	15% (1.4% STEMI)		
LVEF	60% (IQR 55-65%)	57%±10%		
Diabetes	PCI group: 15%; CABG group: 15%	PCI group: 32.2%; CABG group: 28.0%		
Procedural characteristics				
Stent used	89% biolimus-eluting stent (BIOMATRIX™), 11% 1* Gen DES	100% everolimus-eluting stent (XIENCE [™])		
Distal/bifurcation disease	81%	81%		
NUS guidance	Pre-stent evaluation: 47%; post-stent evaluation: 77%	IVUS guidance: 77%		
2-stents used	37%	NR		
2-stent technique	Culotte: 24%; crush: 4%; other: 9%	NR		
LIMA to LAD	96%	98.8%		
Only arterial grafts used	14.3%	24.8%		

EXCEL and NOBLE Trials : Similarities and Diferences

Variables	NOBLE trial	EXCEL trial		
Trial design				
Results: PCI vs. CABG				
Primary endpoint	Favors CABG	No difference		
All-cause-mortality	No difference	No difference		
Cardiac mortality	No difference	No difference		
Total MI	NR	No difference		
Spontaneous MI	Favors CABG	No difference		
Stroke	No difference	No difference		
Total revascularization	Favors CABG	Favors CABG		
Target-lesion revascularization	No difference	No difference		
LMCA revascularization	No difference	NR		
Stent thrombosis	2% [†] , 0.8% (BIOMATRIX [™] DES only) [†]	0.7% [‡]		

Primary end point event in NOBLE and EXCEL trials at 5 and 3 years of follow-up respectively.

Interpreting the results of EXCEL and NOBLE:

- Study population : More 704 pts recruited in EXCEL mean SYNTAX score of EXCEL was 20.6% versus 22.5 % in NOBLE (ns) but both had 81% of distal bifurcation disease. IVUS guidance was used in 77% of cases in EXCEL compared to 47% pre-stent and 77% post-stent in NOBLE. To underline the prevalence of distal LM bifurcation which might impact the outcome since it needs having an experienced heart team, familiar with current best practices and techniques for the management of these patients and to achieve optimal outcomes
- All-cause-mortality or cardiac-death similar between PCI and CABG in both studies .
- Difference in rates of spontaneous MI and higher stent thrombosis PCI may refflects the different stents used in the two trials. (meta-analysis has shown that the BES has an inferior safety profile compared to the EES).
- In NOBLE, the higher rate of spontaneous MI and TLR drove the primary composite endpoint in favor of CABG

October 2016 : Excel & Noble Trials at TCT

From October 2016 to Mrach 2018 : 269 pubblicaions !!

- 2 PCI vs CABG
- 5 Techniques
- 12 PCI outcomes
- 8 Intravsacular imaging
- 11 LM PCI in TAVR
- 17 Acute setting
- 25 PCI vs CABG meta-analysis or pooled analysis
- Case Report and others

Summary of Major Clinical Trials Endpoints Evaluating PCI vs CABG for Management of Unprotected Left Main Coronary Artery Disease

•No difference in mortality between the two treatment strategies
•Meta-analysis including the SYNTAX, PRECOMBAT, Buodriot et al., NOBLE and EXCEL show no difference in safety endpoints.
•In patients with high-risk anatomy with LM and/or MV disease with CABG is clearly the better strategy with superior long-term outcomes.

Patients with low or intermediate risk anatomy (SYNTAX score ≤32) either PCI or CABG are reasonable with PCI being associated with less morbidity, hospital stays and lower stroke rates in the periprocedural period but with higher over
time despite use of II generation DES, intravscualr imaging, procedural techniques and medical therapy.

PCI vs CABG for LM – a Meta-Analysis of Six Randomized Trials and 4,686 pts

30-day outcomes

Palmerini T et al. Am Heart J 2017

PCI vs CABG for LM – a Meta-Analysis of Six Randomized Trials and 4,686 pts

Palmerini T et al. Am Heart J 2017

PCI vs CABG for LM – a Meta-Analysis of Six Randomized Trials and 4,686 pts

Palmerini T et al. Am Heart J 2017

Repeat Revascularization

Drug-eluting stents versus coronary artery bypass grafting for left-main coronary artery disease

Hisato Takagi, MD, PhD¹ 💿 | Tomo Ando, MD² 😳 | Takuya Umemoto, MD, PhD¹ | for the ALICE (All-Literature Investigation of Cardiovascular Evidence) Group

Death at follow-up

Test for subgroup differences: $Chi^2 = 0.02$, df = 1 (P = 0.89), $l^2 = 0\%$

Catheter Cardiovasc Interv. 2018;91:697-709.

Drug-eluting stents versus coronary artery bypass grafting for left-main coronary artery disease

Hisato Takagi, MD, PhD¹ i Tomo Ando, MD² i Takuya Umemoto, MD, PhD¹ i for the ALICE (All-Literature Investigation of Cardiovascular Evidence) Group

Composite of death / MI at follow-up

Catheter Cardiovasc Interv. 2018;91:697–709.

Drug-eluting stents versus coronary artery bypass grafting for left-main coronary artery disease

Hisato Takagi, MD, PhD¹ 💿 | Tomo Ando, MD² 😳 | Takuya Umemoto, MD, PhD¹ |

for the ALICE (All-Literature Investigation of Cardiovascular Evidence) Group

Composite of death / MI, and TLR at follow-up

Test for subgroup differences: $Chi^2 = 4.28$, df = 1 (P = 0.04), $I^2 = 76.6\%$

Hazard Ratio Hazard Ratio Study or Subgroup Weight IV, Random, 95% CI IV, Random, 95% CI 1.9.1 Randomized controlled trials NOBLE 2016 11.1% 1.48 [1.11, 1.96] **EXCEL 2016** 18.7% 1.19 [0.97, 1.45] PRECOMBAT 2015 6.0% 1.26 [0.84, 1.90] SYNTAX 2014 13.0% 1.23 [0.95, 1.59] Boudriot 2011 1.0% 2.25 [0.79, 6.40] Subtotal (95% CI) 49.8% 1.27 [1.12, 1.45] Heterogeneity: Tau² = 0.00; Chi² = 2.72, df = 4 (P = 0.61); $I^2 = 0\%$ Test for overall effect: Z = 3.64 (P = 0.0003) 1.9.2 Observational studies with propensity-score analysis Yu 2016 12.4% 1.39 [1.07, 1.82] **DELTA 2012** 12.2% 1.35 [1.03, 1.76] Watanabe 2012 3.6% 1.83 [1.07, 3.13] Yi 2012 3.8% 2.41 [1.43, 4.07] CUSTOMIZE 2011 4.1% 2.39 [1.45, 3.94] Rittger 2011 2.0% 1.70 [0.81, 3.57] Chieffo 2010 2.5% 1.58 [0.82, 3.05] Kang 2010 3.5% 1.81 [1.05, 3.13] Wu 2010 4.1% 1.24 [0.75, 2.04] White 2008 2.0% 1.45 [0.70, 3.00] Subtotal (95% CI) 50.2% 1.56 [1.36, 1.78] Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 8.86$, df = 9 (P = 0.45); $I^2 = 0\%$ Test for overall effect: Z = 6.28 (P < 0.00001) Total (95% CI) 100.0% 1.42 [1.28, 1.58] Heterogeneity: Tau² = 0.00; Chi² = 15.86, df = 14 (P = 0.32); $I^2 = 12\%$ 0.1 0.2 0.5 10 Test for overall effect: Z = 6.55 (P < 0.00001)

Favours PCI-DES Favours CABG

12(6) <u>https://doi.org/10.1371/journal.pone.0179060</u> May 2017

Death	PC		CAB	G		Odds Ratio			Odds R	atio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M-H, Randor	n, 95% Cl	
LEMANS	1	52	4	53	1.2%	0.24 [0.03, 2.23]	2008	_			
SYNTAX LM	15	355	15	336	11.1%	0.94 [0.45, 1.96]	2009				
Boudriot et al	2	100	5	101	2.2%	0.39 [0.07, 2.07]	2010				
PRECOMBAT	6	300	8	300	5.2%	0.74 [0.26, 2.17]	2011				
EXCEL	50	948	68	957	42.0%	0.73 [0.50, 1.06]	2016				
NOBLE	53	592	56	592	38.3%	0.94 [0.63, 1.40]	2016				
Total (95% CI)		2347		2339	100.0%	0.81 [0.63, 1.03]			•		
Total events	127		156						10.08		
Heterogeneity: Tau ² =	= 0.00; Ch	= 2.9	4. $df = 5($	P = 0.7	1): $ ^2 = 0\%$	6	1				
Test for overall effect	Z = 1.73	(P = 0.0)	(8)					0.01	0.1 1	10	100
MI			101	140					Favours PCI F	avours CABG	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	Year		M-H, Rande	om, 95% Cl	
LEMANS	1	52	3	53	1.8%	0.33 [0.03, 3.25]	2008	-			
SYNTAX LM	15	355	14	336	16.8%	1.01 [0.48, 2.14]	2009				
Boudriot et al	3	100	3	101	3.5%	1.01 [0.20, 5.13]	2010				
PRECOMBAT	4	300	3	300	4.1%	1.34 [0.30, 6.03]	2011		-		
EXCEL	47	948	67	957	62.9%	0.69 [0.47, 1.02]	2016				
NOBLE	11	592	8	592	11.0%	1.38 [0.55, 3.46]	2016		1/1 <u></u>	100 M	
Total (95% CI)		2347		2339	100.0%	0.82 [0.60, 1.11]	i l		•		
Total events	81		98			Contract of the			1.1		
Heterogeneity: Tau ² =	= 0.00; Ch	i ² = 3.3	8. df = 5	(P = 0.6)	(4): $ ^2 = 0$	×		-			
Test for overall effect	Z = 1.29	(P = 0.2	20)					0.01	0.1 Favours PCI	Favours CABG	100

	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I Year	ŕ.	M-H, Ran	dom, 95% Cl	
	LEMANS	0	52	2	53	6.1%	0.20 [0.01, 4.19	2008	•			
	SYNTAX LM	1	355	8	336	12.6%	0.12 [0.01, 0.93	2009	. —		-	
	PRECOMBAT	0	300	2	300	6.2%	0.20 [0.01, 4.16	2011	+			
	NOBLE	0	592	6	592	6.9%	0.08 [0.00, 1.35	2016	; • <u> </u>		+	
Stroke	EXCEL	14	948	24	957	68.1%	0.58 (0.30, 1.13	2016	5		+	
	Total (95% CI)		2247		2238	100.0%	0.36 [0.17, 0.79]	1		-	•	
	Total events	15		42								
	Heterogeneity: Tau ² =	0.11; Ch	$i^2 = 4.4$	4, $df = 4$ (P = 0.3	35); I ² = 1	0%		0.01		1 10	100
	Test for overall effect:	Z = 2.57	(P = 0.0	01)	2	997.70 (CA)			0.01	Favours PC	I Favours CABG	100
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M-H, Rand	om, 95% CI	
	LEMANS	15	52	5	53	8.3%	3.89 [1.30, 11.68]	2008				
	SYNTAX LM	45	355	22	336	35.3%	2.07 11.22 3.531	2009				
	Boudriot et al	14	100	6	101	10.1%	2.58 (0.95, 7.01)	2010				
	PRECOMBAT	18	300	10	300	16.1%	1.85 [0.84, 4.08]	2011				
	EXCEL	0	0	0	0		Not estimable	2016				
TVR	NOBLE	30	592	20	592	30.2%	1.53 [0.86, 2.72]	2016		2	+	
	Total (95% CI)		1399		1382	100.0%	2.00 [1.46, 2.75]				•	
	Total events	122		63								
	Heterogeneity: Tau ² =	= 0.00; Ch	i ² = 2.5	5, df = 4 (P = 0.6	$(4); I^2 = 0$	*		0.01	01	1 10	100
	Tool for movell offers	7- 1 20	(D = 0 (CAR			Odde Patio		0.01	0.1 Odde P	atio	100
	Study or Subgroup	Events	Total	Events	Total	Weight	M.H. Random 95% CI	Year		M-H Randor	n 95% Cl	
	LEMANS	16	62	12	62	0.1%	1 27 10 59 2 221	2009				
	SYNTAXIM	56	355	46	336	23.3%	1 18 (0 77 1 80)	2000		_	_	
	Boudriot et al	19	100	14	101	11 2%	1 46 (0 69 3 10)	2010				
	PRECOMBAT	26	300	20	300	15 3%	1 33 [0 72 2 44]	2011			-	
MACE	EXCEL	71	948	100	957	29.7%	0.69 (0.50, 0.95)	2016				
	NOBLE	13	592	16	592	11.5%	0.81 [0.39, 1.70]	2016			Ħ.	
	Total (95% CI)		2347		2339	100.0%	1.02 [0.76, 1.36]			+		
	Total events	201		209								
	Heterogeneity: Tau ² = Test for overall effect:	z = 0.05; Chi	P = 0.8	5, df = 5 (F 9)	P = 0.15	5); I² = 38'	%	ĩ	0.01	0.1 1 Favours PCI	10 avours CABG	100

Outcome / Study PCI CABG HR (95% CI) Events / Participants Events / Participants All-cause death EXCEL 9/948 10/957 0.90 (0.37, 2.22) LE MANS 0/52 2 // 53 0.20 (0.01, 4.15) NOBLE 2/592 7/592 0.29 (0.06, 1.37) Subtotal 0.61 (0.27, 1.36) Stroke EXCEL 6/948 12/957 0.50 (0.19, 1.33) LE MANS 0/52 2/53 0.20 (0.01, 4.15) NOBLE 0/592 4/592 0.11 (0.01, 2.06) Subtotal 0.39 (0.16, 0.94) Myocardial Infarction 1.01 (0.21, 4.89) Boudriot et al 3/100 3/101 EXCEL 37/948 59 / 957 0.63 (0.42, 0.95) LE MANS 1 //52 2/53 0.51 (0.05, 5.45) NOBLE 19/592 16/592 1.19 (0.62, 2.29) Subtotal 0.76 (0.54, 1.06) Repeat revascularization Boudriot et al 1/100 2/101 0.51 (0.05, 5.48) 13/957 EXCEL 7/948 0.54 (0.21, 1.35) LE MANS 1 // 52 0/53 3.06 (0.13, 73.36) NOBLE 7/592 10/592 0.70 (0.27, 1.83) Subtotal 0.64 (0.34, 1.21) MACCE EXCEL 53/948 88 / 957 0.60 (0.43, 0.85) LE MANS 1 // 52 7/53 0.88 (0.79, 0.99) 4/300 PRECOMBAT 9/300 0.44 (0.14, 1.43) Subtotal 0.72 (0.51, 1.03) Death, stroke, or MI EXCEL 46/948 75/957 0.61 (0.42, 0.88) NOBLE 21/592 27 / 592 0.87 (0.48, 1.56) Subtotal 0.67 (0.49, 0.92) Т т .01 .05 .25 30 75 150 5

Favours PCI

Effect of PCI on 30-day risk of all-cause mortality and major cardiovascular outcomes

Favours CABG Laukkanen JA, et al. Open Heart 2017;4:e000638. doi:10.1136/openhrt-2017-000638

Outcome / Study	PCI Events / Participants	CABG Events / Participants		HR (95% CI)
All-cause death	179.72037939.870739 7 775939			
Boudriot et al	2/100	5/101	e	0 40 /0 08 2 03)
LE MANG	1 // 60	4// 62		0.40 (0.00, 2.00)
NORIE	0 / 502	17 / 500		0.20 (0.03, 2.20)
PRECOMPAT	6 (200	9/200		0.33 (0.24, 1,10)
PRECOMBAT	*51255	67 300		0.75 (0.26, 2.14)
Subtotal	157 355	157 336	0	0.66 (0.42, 1.96)
Subiotal			~	0.00 (0.42, 1.04)
Stroke				
LE MANS	0/52	2 // 53	•	0.20 (0.01, 4.15)
NOBLE	2/592	6 / 592		0.33 (0.07, 1.65)
PRECOMBAT	0/300	2/300		0.20 (0.01, 4.15)
SYNTAX	1/355	8/336		0.12 (0.01, 0.93)
Subtotal			\sim	0.23 (0.07, 0.69)
Myocardial Infarction				
Boudrist et al	3/100	3/101		101/021 480
LE MANS	1 // 52	3//53		0.34 (0.04, 3.16)
NORLE	11 (502	8/602		1 39 (0 56 3 30)
PRECOMPAT	4 (200	3/300		1.30 (0.50, 5.35)
ECOMBAT	47 300	14 / 226		1.03 (0.30, 5.91)
Subtotol	157 555	147 330		1.02 (0.46, 2.14)
Subibiai				1.08 (0.00, 1.70)
Repeat revascularization				
Boudriot et al	14 / 100	6 / 101		2.36 (0.94, 5.89)
LE MANS	15 / 52	5 // 53		3.06 (1.20, 7.80)
NOBLE	32 / 592	24 / 592		1.33 (0.80, 2.24)
PRECOMBAT	18/300	10 / 300		1.80 (0.85, 3.84)
SYNTAX	42 / 355	22 / 336		1.81 (1.10, 2.96)
Subtotal			\diamond	1.77 (1.33, 2.37)
MACCE				
Boudriot et al	19 / 100	14 / 101		1.37 (0.73, 2.58)
LE MANS	16 / 52	13/53		1.25 (0.67, 2.34)
NOBLE	42 / 592	42 / 592	+	1.00 (0.66, 1.51)
PRECOMBAT	26 / 300	20 / 300		1.30 (0.74, 2.28)
SYNTAX	56 / 355	46 / 336	-	1.15 (0.80, 1.65)
Subtotal	202022022	830: Activ (1)	O	1.16 (0.94, 1.44)
Death stroke or Mi				
Death, Stoke, of MI	10/200	12/200		0.92 /0.27 4 00
SVNTAV	25/255	12/300		0.03 (0.37, 1.90)
NOBLE	20/ 500	31/330		0.70 (0.40, 1.27)
Subtolal	221 332	31/392	2	0.76 (0.41, 1.20)
ounital			\sim	0.70 (0.04, 1.00)
			.01 .05 .25 1 5 30	

Favours PCI

Effect of PCI on one year risk of all-cause mortality and major cardiovascular outcomes

Favours CABG Laukkanen JA, et al. Open Heart 2017;4:e000638. doi:10.1136/openhrt-2017-000638

Outcome / Study	PCI Events / Participants	CABG Events / Participants		HR (95% CI)
All-cause death			1	
EXCEL	71/948	53 / 957		1.34 (0.94, 1.91)
NOBLE	36 / 592	33 / 592		1.07 (0.67, 1.72)
PRECOMBAT	17 / 300	23 / 300		0.73 (0.39, 1.37)
SYNTAX	45 / 357	48 / 348		0.88 (0.58, 1.32)
Subtotal			•	1.04 (0.81, 1.33)
Stroke				
EXCEL	20 / 948	26 / 957		0.77 (0.43, 1.37)
NOBLE	16 / 592	7 / 592		- 2.25 (0.93, 5.48)
PRECOMBAT	2/300	2 / 300	+	0.99 (0.14, 7.02)
SYNTAX	5/357	14 / 348		0.33 (0.12, 0.93)
Subtotal			\sim	0.87 (0.39, 1.93)
Myocardial Infarction				
EXCEL	72 / 948	77 / 957		0.93 (0.67, 1.28)
NOBLE	29 / 592	10 / 592		2.88 (1.40, 5.90)
PRECOMBAT	6/300	5/300		1.20 (0.37, 3.93)
SYNTAX	28 / 357	16 / 348	*	1.67 (0.91, 3.10)
Subtotal			\sim	1.48 (0.85, 2.58)
Repeat revascularization				
EXCEL	114 / 948	67 / 957		1.72 (1.27, 2.33)
NOBLE	71/592	47 / 592		1.50 (1.04, 2.17)
PRECOMBAT	38 / 300	21/300		1.86 (1.09, 3.17)
SYNTAX	90 / 357	49 / 348		1.82 (1.28, 2.57)
Subtotal			 	1.70 (1.42, 2.05)
MACCE				
EXCEL	251 / 948	202 / 957		1.22 (1.02, 1.47)
NOBLE	121 / 592	81 / 592		1.48 (1.11, 1.96)
PRECOMBAT	52 / 300	42 / 300	+ • -	1.27 (0.84, 1.90)
SYNTAX	130 / 357	103 / 348	-	1.23 (0.95, 1.59)
Subtotal			 Image: A set of the set of the	1.27 (1.12, 1.44)
Death, stroke, or MI				
EXCEL	137 / 948	135 / 957	*	1.00 (0.79, 1.26)
PRECOMBAT	25 / 300	28 / 300		0.89 (0.52, 1.52)
SYNTAX	67 / 357	69 / 348		0.91 (0.65, 1.27)
NOBLE	81 / 592	50/ 592		1.55 (1.08, 2.22)
Subtotal			•	1.07 (0.84, 1.35)
		10	1 1	1 1 1
			05 .25 1	5 15 30

Effect of PCI on **3 to 5-year** risk of all-cause mortality and major cardiovascular outcomes

Laukkanen JA, et al. Open Heart 2017;4:e000638. doi:10.1136/openhrt-2017-000638

Favours CABG

Favours PCI

Generalizability of EXCEL and NOBLE results to a large registry population with unprotected left main coronary artery disease

Table 1 Key features of each clinical study

Designs	EXCEL trial	NOBLE trial	IRIS-MAIN registry		
Study type	Multicenter (126 sites in North/South America, Europe, Asia Pacific), prospective, open- label, randomized, noninferiority design trial comparing PCI and CABG	Multicenter (36 sites in northern Europe), prospective, open-label, randomized, noninferiority design trial comparing PCI and CABG	Multicenter (50 sites in Asia), prospective, nonrandomized observational registry including PCI, CABG, or medication alone		
Main inclusion criteria	clusion Unprotected LMCA disease with angiographic Unprotected LMCA disease with angiographic ia DS > 70%, as estimated visually, or 50% DS > 50%, as estimated visually, or FFR ≤ DS < 70% with at least one of following: (a)		Unprotected LMCA disease with angiographic DS > 50%, as estimated visually		
Key exclusion criteria	SYNTAX score ≥ 33, prior PCI at left main (any time) or any other coronary artery (within 1 year), prior CABG, concomitant valvular or aortic surgery, CK-MB more than normal or recent MI with CK-MB still elevated, left main reference vessel diameter <2.25 or > 4.25 mm	STEMI within 24 h, > 3 or complex additional coronary lesions (length > 25 mm, chronic total occlusion, two-stent bifurcation, calcified or tortuous vessel morphology), patient is too high risk for CABG or PCI, expected survival <1 year	Minimal exclusion criteria (prior CABC concomitant valvular or aortic surgery)		
Primary endpoint	Composite of all-cause death, MI, or stroke	Composite rate of all-cause death, nonprocedural MI, repeat revascularization, or stroke	Outcomes of interest were death, MI, stroke, repeat revascularization, and its composite outcome		
Recruitment period	September 2010-March 2014	December 2008–January 2015	November 2006-December 2013		
Follow-up period (median) (years)	3.0 (2.4-3.0)	3.1 (2.0-5.0)	3.0 (2.0-4.1)		
Number of CABG patients	957	592	774		
Number of PCI patients	948	592	1707		
Stent type used for PCI	XIENCE cobalt-chromium everolimus-eluting stent	BioMatrix biolimus-eluting stent recommended since March 2010, but other CE-marked DES allowed	Any second generation DES available in each participating center		

CABG, coronary artery bypass grafting; CK-MB, creatine kinase-myocardial band; DES, drug-eluting stent; DS, diameter stenosis; EXCEL, Evaluation of XIENCE Everolimus-Eluting Stent Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization; FFR, fractional flow reserve; IRIS – MAIN, Interventional Research Incorporation Society – Left MAIN Revascularization; IVUS, intravascular ultrasound; LMCA, left main coronary artery; MI, myocardial infarction; MLA, minimal lumen area; NOBLE, Nordic–Baltic–British Left Main Revascularization Study; PCI, percutaneous coronary intervention; STEMI, ST-segment elevation myocardial infarction; SYNTAX, Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery.

Generalizability of EXCEL and NOBLE results to a large registry population with unprotected left main coronary artery disease

P H Lee et al , Coronary Artery Disease 2017, 28:675–682

European Proposal : Algorithm for Management of Unprotected Left Main Coronary Artery Disease by D Capodanno J Thorac Dis 2017;9(9):2766-2770 Management of Left Main Coronary Artery Disease R Ramadan, W.E. Boden, S Kinlay,

J Am Heart Assoc. 2018;7:e008151. DOI: 10.1161/JAHA.117.008151

European Heart Journal Advance Access published August 29, 2014

ESC/EACTS GUIDELINES

2014 ESC/EACTS Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Recommendation for the type of revascularization (CABG or PCI) in patients with SCAD with suitable coronary anatomy for both procedures and low predicted surgical mortality

Left main disease with a SYNTAX score \leq 22.	1	В	1	В	17,134,170
Left main disease with a SYNTAX score 23-32.	1	В	lla	В	17

Yes We Can... but we should continue to improve doing it improving outcomes in both PCI and CABG, waiting for longer follow-up data (10 yrs ?)

- Benefit of CABG is often seen after extended follow-up (median followup duration of 3.1 years, which is relatively short in both studies).Longerterm follow-up data from both trials provide insights into the durability of the results for both PCI and CABG.
- The decision between PCI and CABG for ULMCAD still being based on weighing the benefits and risks of PCI versus CABG and taking patient preference into consideration.

Thank You for Your Attention!